Meglumine

1 Nonproprietary Names

BP: Meglumine JP: Meglumine USP: Meglumine

2 Synonyms

1-Methylamino-1-deoxy-D-glucitol; *N*-methyl-D-glucamine.

N-methylglucamine;

3 Chemical Name and CAS Registry Number

1-Deoxy-1-(methylamino)-D-glucitol [6284-40-8]

4 Empirical Formula Molecular Weight $C_7H_{17}NO_5$ 195.21

5 Structural Formula

6 Functional Category

Organic base.

7 Applications in Pharmaceutical Formulation or Technology

Meglumine is an organic base used as a pH-adjusting agent and solubilizing agent primarily in the preparation of soluble salts of iodinated organic acids used as X-ray contrast media.

8 Description

Meglumine occurs as a white to slightly yellow-colored crystalline powder; it is odorless or with a slight odor.

9 Pharmacopeial Specifications

See Table I.

Table 1: Pharmacopeial specifications for meglumine.

Test	BP 2001	JP 2001	USP 25
Identification	+	+	+
Characters	+		
Completeness and color of solution	_	_	+
Melting point	128-131°C	128-131°C	128–132 °C
Specific optical rotation (10% w/v aqueous solution)	– 16.0 to – 17.0 °	-16.0 to -17.0°	−15.7 to −17.3°
Reducing sugars	+	-	_
Loss on drying	≤1.0%	≤0.5%	≤1.0%
Residue on ignition	_	≤0.10%	≤0.1%
Sulfated ash	≤0.1%	_	_
Absence of reducing substances	_	+	+
Heavy metals	_	≤10ppm	≤0.002%
Arsenic	_	≤1 ppm	_
Chloride	_	≤0.009%	_
Sulfate	_	≤0.019%	
Pyrogens ^(a)	+	_	_
Assay (dried basis)	99.0–100.5%	≥99.0%	99.0–100.5%

⁽a) Note only applicable for meglumine intended for parenteral use.

10 Typical Properties

Acidity/alkalinity: pH = 10.5 (1% w/v aqueous solution).

Dissociation constant: $pK_a = 9.5$ at 20 °C

Melting point: 128–132 °C

Osmolarity: a 5.02% w/v aqueous solution is iso-osmotic with

serum.

Solubility: see Table II.

Table II: Solubility of meglumine.

Solvent	Solubility at 20 °C unless otherwise stated		
Chloroform	Practically insoluble		
Ethanol (95%)	1 in 80 '		
	1 in 4.8 at 70 °C		
Ether	Practically insoluble		
Water	1 in 1		

Specific rotation $[\alpha]_D^{20}$: -16.5 ° (10% w/v aqueous solution)

11 Stability and Storage Conditions

Meglumine does not polymerize or dehydrate unless heated above $150\,^{\circ}\text{C}$ for prolonged periods.

The bulk material should be stored in a well-closed container in a cool, dry place. Meglumine should not be stored in aluminum containers since it reacts to evolve hydrogen gas; it discolors if stored in containers made from copper or copper alloys. Stainless steel containers are recommended.

12 Incompatibilities

Incompatible with aluminum, copper, mineral acids, and oxidizing materials.

13 Method of Manufacture

Meglumine is prepared by the imination of glucose and monomethylamine, in an alcoholic solution, followed by catalytic hydrogenation.

14 Safety

Meglumine is widely used in parenteral pharmaceutical formulations and is generally regarded as a nontoxic material at the levels usually employed as an excipient.

LD₅₀ (mouse, IP): 1.68 g/kg

15 Handling Precautions

Observe normal precautions appropriate to the circumstances and quantity of material handled. Meglumine should be handled in a well-ventilated environment and eye protection, gloves, and a respirator are recommended. Exposure to meglumine dust should be kept below 10 mg/m³ for total inhalable dust (8-hour TWA) or 5 mg/m³ for respirable dust (8-hour TWA). There is a risk of explosion when meglumine dust is mixed with air.

16 Regulatory Status

Included in the FDA Inactive Ingredients Guide (injections). Included in parenteral medicines licensed in the UK.

17 Related Substances

Eglumine.

Eglumine

Empirical formula:: C₈H₁₉NO₅ Molecular weight: 209.24 CAS number: [14216-22-9]

Synonyms: 1-deoxy-1-(ethylamino)-D-glucitol; *N*-ethylgluca-

mine.

Melting point: ≈ 138 °C

Comments: eglumine is prepared similarly to meglumine except that monoethylamine is used as the precursor,

instead of monomethylamine.

18 Comments

19 Specific References

20 General References

Bremecker KD, Seidel K, Böhner A. Polyacrylate gels: use of new bases in drug formulation [in German]. *Dtsch Apoth Ztg* 1990; 130(8): 401-403

Chromy V, Kulhanek V, Fischer J. D-(-)-N-Methylglucamine buffer for pH 8.5 to 10.5. Clin Chem 1978; 24(2): 379–381.

Chromy V, Zahradnicek L, Voznicek J. Use of N-methyl-D-glucamine as buffer in the determination of serum alkaline phosphatase activity. *Clin Chem* 1981; 27(10): 1729–1732.

Japan Pharmaceutical Excipients Council. *Japanese Pharmaceutical Excipients Directory* 1996. Tokyo: Yakuji Nippon, 1996: 305.

21 Author

PJ Weller.

22 Date of Revision

30 April 2002.